



Techno-Venture "AMTEC Co., Ltd." keeps providing benefit of customers

# AMTEC Co.,Ltd.

PANASONIC Co., Ltd GROUP

# Single crystal of Zinc oxide "Pana-Tetra" gives you a new Techno story.



## Corporate Profile



Date of Establishment : March 01, 2006

Business started : April. 01, 2006

<u>Capital</u>: ¥80,000,000(JPY) (96.25% invested by Panasonic corp.)

#### **Business Line**

Development, manufacturing, and sales of zinc oxide of single crystal ("Pana-Tetra"), composite material, diversified products (compound resin, antimicrobial agent, cleaning agent for molding machines, and functional sheet, etc.), and aquarium products (anti-algae material, water conditioner material, and filtration material, etc.)

Location : Head Office 3-1-1 Inazu-cho, Toyonaka-city, Osaka 561-0854, JAPAN Phone: +81 6-6866-8508

Factory

ory Takou 1-1 Kumasaka-machi, Kaga-city, Ishikawa 922-0842 JAPAN Phone: +81 761-72-5554



### What is "Pana-Tetra"



#### **Basic Structure**

Tetrapod shaped single crystal of zinc oxide



#### Main Complex effect

- Improvement in the dimensional stability by the anisotropic relaxation effect
- Improvement of sliding, abrasion-resistant, and resistance to pressure
- Prevention from electrification
- Anti-algae and water conditioner material for aquarium

| Chemical formula   | ZnO            |
|--------------------|----------------|
| Shape              | Tetrapod shape |
| Ave. length of leg | Abt. 10µm      |
| Specific gravity   | 5.78           |
| Relative density   | Abt. 0.1       |
| Sublimation point  | 1.720°C        |
| Volume resistance  | Abt.10Ω∙cm     |

3 <sub>株式会社</sub>アムテック

### "Pana-Tetra" Compound examples

#### Feature of "Pana-Tetra"

"Pana-Tetra" offers not only the special advantages of single crystal but also provides remarkable effects of compound resin, that no other compound-filler can achieve.

#### Various complex effect are the features

(1) Braking ability (Tire · Shoes) (2) Thermal conductivity (Sheet · Resin) **③ Electric wave absorbency (Rubber · Paint) (4)** Precise molding stability (Molding parts) **(5)** Resisting pressure ability (Seal ring) **(6)** Anti-abrasion capacity (Bearing · Gear) **⑦** Electrification prevention (Film • Paint) **(8)** Micro reinforcement (Adhesive) **9** Filterability (Filter) **(1)** Ultraviolet absorbency (cosmetic) (1) Super water repellence (Paint) 12 Anti-algae and Antibacterial properties (Paint · Resin · Water)



functional special fille Pana - Tetra

### **Electrification prevention paint** (1)



■ Pana-Tetra has a semiconductor characteristic, and it is the most suitable filler as electrification prevention paint. The electrification prevention characteristic is stable by electronic conductivity. In addition, we realize pure white and an arbitrary color coat.

#### Electrification prevention and conductivity

■ Pana-Tetra is three-dimensional tetrapod shape, so that it become advantageous to the conductive pass formation in comparison with granular filler



### Electrification prevention paint (2)



Surface resistance of paint with "Pana-tetra"

Resin of Paint : Acrylic Resin (liquid type)
 Measuring instrument : Hiresta up MCP-HT450
 Measuring voltage : 500V







### Electrification prevention

#### **1** Simple compound with Pana-Tetra (PTFE)

|       | Pana-Tetra | Surface<br>resisitance (Ω) | Elec. start<br>Pressure (V) | Elec. Pressure<br>after 60sec (V) |
|-------|------------|----------------------------|-----------------------------|-----------------------------------|
|       | 0 wt%      | 1.0+E16                    | 4,000                       | 3,500                             |
| Plate | 20 wt%     | 1.0+E12                    | 1,700                       | 400                               |
|       | 40 wt%     | 1.0+E9                     | 500                         | 50                                |

#### **(2)** Compound with Pana-Tetra and carbon fiber

|       | Carbon  | Pana-Tetra | Surface<br>resistance (Ω) | Elec. start<br>Pressure (V) | Elec. Pressure<br>after 60sec (V) |
|-------|---------|------------|---------------------------|-----------------------------|-----------------------------------|
| Diata | 10 wt9/ | 0 wt%      | 1.0+E7                    | 480                         | 270                               |
| Fiate | 10 W1%  | 20 wt%     | 1.0+E5                    | 170                         | 80                                |
| Shoot | 10 wt9/ | 0 wt%      | 1.0+E7                    | 2,500                       | 2,300                             |
| Sneet | 10 W1%  | 20 wt%     | 1.0+E5                    | 800                         | 150                               |

Surface resistance : Transcendence marginal resistance meter (500V)

### An electric wave absorption

■ Because Pana-Tetra has a semiconductor characteristic and the dielectric characteristic, It shows a superior electric wave absorption characteristic.So that Pana-tetra run a fever efficiently by absorbing the microwaves such as microwave ovens (2.45GHz). In addition, the silicone rubber with Pana-Tetra is used as electric wave absorption parts.

Pana-Te



#### An electric wave absorption

### Temperature rise of paint with Pana-Tetra

by the electric wave absorbency

An experiment method:

Appling Pana-Tetra composition urethane paint to ABS resin tablewar. And confirming a temperature rise by the microwave oven heating.

A result: Temperature rise of paint with Pana-Tetra (10wt% and 30wt% composition) (Microwave power :700W Oven time:30 seconds) A painting part: 60-65 degrees Celsius Non-painting part: 25-30 degrees



By Pana-Tetra compound painting, the temperature rise of the container become early. As a result, shortening of the cooking time and partial heating cooking are possible. So that, it is possible to improve taste and by warming the whole tablewar

### Compound effect of Pana-Tetra

■ Pana-Tetra is the minute zinc oxide single crystal filler which can compound for improvement of the dimensions precision of the resin molding (the anisotropic relief of the molding shrinkage rate and the linear thermal expansion) and the surface smoothness and abrasion-resistant.

#### Size precision Improvement by anisotropic relief

By compounding Pana-tetra, the orientation of the glass fiber at the time of the injection molding (PBT resin with glass fiber) is reduced. So that anisotropy and warp of the molding resin are improved. In addition, Pana-Tatra improves surface smoothness by holding an exposure of glass fiber from the surface of resin.



Compared with mold shrinkage and warp of plate

Pana-Tet

| Pana-Tetra<br>(wt%) | Glass fiber<br>(wt%) | Compared<br>with mold<br>shrinkage<br>(TD/MD | Warp of<br>plate<br>(%) |
|---------------------|----------------------|----------------------------------------------|-------------------------|
| 0                   | 30                   | 5.5                                          | 35                      |
| 10                  | 30                   | 4.2                                          | 23                      |
| 20                  | 30                   | 3.8                                          | 18                      |
| 30                  | 30                   | 2.5                                          | 15                      |

Measuring plate: 50 × 80mm t=1,5mm film gate

Warp of plate=Smm/100mm × 100



### Surface smoothness (1)

■ Pana-Tetra improves surface smoothness by holding an exposure of glass fiber from the surface of resin (PC resin, PPS resin, & LCP resin) with glass fiber.

#### ① PC resin / Pana-Tetra / Glass fiber compound

| Pana-Tetra | Glass fiber | Average surface<br>rouhness (Ra) | Measuring method : JIS B0601-01<br>Measuring sample : Plate of PC resin |
|------------|-------------|----------------------------------|-------------------------------------------------------------------------|
| 0 wt %     | 30 wt %     | 6.5 µm                           | ( 100 x 100 x 3mm)<br>Measuring speed : 0.6mm/min                       |
| 10 wt %    | 30 wt %     | 3.2 µm                           | Measuring direction<br>: Perpendicular to the gate                      |
| 20 wt %    | 30 wt %     | 2.0 µm                           | Measuring length : 100mm                                                |



### Surface smoothness (2)

#### **2** PPS resin / Pana-Tetra / Glass fiber compound

| Pana-Tetra    | Glass fiber   | Average surface<br>Roughness (Ra) | Height at the max<br>Direction (Ry) |
|---------------|---------------|-----------------------------------|-------------------------------------|
| 0 wt%         | <b>30 wt%</b> | 1.27 μm                           | 14.3 μm                             |
| 10 wt%        | <b>30 wt%</b> | 1.14 µm                           | 13.1 μm                             |
| 20 wt%        | <b>30 wt%</b> | 0.97 μm                           | 11.5 μm                             |
| <b>30 wt%</b> | <b>30 wt%</b> | 0.94 µm                           | 10.8 µm                             |

Measuring condition is the same of PC resin (#)

#### **③** LCP resin / Pana-Tetra / Glass fiber compound

| Pana-Tetra | Glass fiber | Average surface<br>Roughness (Ra) |
|------------|-------------|-----------------------------------|
| 0 wt%      | 30 wt%      | 1.45 µm                           |
| 15 wt%     | 30 wt%      | 0.62 µm                           |



### Abrasion-resistant (1)

Resin is POM with Pana-Tetra

15

株式会社アムテック

■ By compounding Pana-Tetra with sliding property Resin (POM etc.) used for bearing and special gear can improve an abrasion coefficient-resistant while maintaining a coefficient of friction of the based resin with the following characteristics of Pana-Tetra. In addition, by combining Pana-Tetra with the resin which is compound with carbon fiber or glass fiber, abrasion resistance can be improved.

- 1) The hardness of Pana-Tetra is lower than glass fiber (Mohs hardness of Pana-Tetra is the half of the glass fiber), and an attack to the partner materials becomes soft.
- 2) Pana-Tetra is a thin filler, so that surface of resin roughness is reduced.
- 3) Because Pana-Tetra is good heat conduction ability, Pana-Tetra holds the outbreak of the frictional heat in check.

#### 1 Based resin : POM resin

| Test        | Pana-Tet       | ra 10 wt%                   | Without F     | Pana-Tetra                  |
|-------------|----------------|-----------------------------|---------------|-----------------------------|
| Time<br>(H) | Resin<br>(mg)  | Partner<br>material<br>(mg) | Resin<br>(mg) | Partner<br>material<br>(mg) |
| 1           | 0              | 0.3                         | 1.5           | 1.2                         |
| 10          | 0.9            | 0.8                         | 7.1           | 1.4                         |
| 30          | 1.4            | 0.8                         | 29            | 1.7                         |
| Speed 1     | .1cm/sec, Part | ner material Fe             | S25C roughn   | ess 1.6a                    |

Automotive part bearing

### Abrasion-resistant (2)



| 2 Base : PPS resin ( with Ca                      | rbon fiber 10 wt% )                                     | Audio tape head holder     |
|---------------------------------------------------|---------------------------------------------------------|----------------------------|
| Pana-Tetra 40 wt%                                 | Without Pana-Tetra                                      |                            |
| Resin (mm3 / kmkg)                                | Resin (mm3 / kmkg)                                      |                            |
| 0.2                                               | 1.19                                                    |                            |
| Speed 0.3m/sec, Surfa<br>Test time : 1h, Pa       | ice pressure : 10kg / cm2<br>artner material : S45C     |                            |
| ③ Base : LCP resin ( with Gla                     | ass fiber 30 wt% )                                      | On the shake we have       |
| Pana-Tetra 20 wt%                                 | Without Pana-Tetra                                      | Optical pick-up base       |
| Resin ( mg )                                      | Resin ( mg )                                            |                            |
| 0.5                                               | 136                                                     |                            |
| Speed 300m/sec, Surfa<br>Test time : 1h, Pa       | ace pressure : 20kg / cm2<br>artner material : S55C     |                            |
| ④ Base : PTFE resin ( with C                      | arbon fiber 10 wt% )                                    |                            |
| Pana-Tetra 20 wt%                                 | Without Pana-Tetra                                      |                            |
| Resin ( mg )                                      | Resin ( mg )                                            | Charletter (Station of the |
| 6.19                                              | 53.6                                                    | I The second               |
| Speed 0.5m/sec, Surfac<br>Test time : 8h, Partner | ce pressure : 7.65kg / cm2<br>material : AL(A5052 #800) | 16<br>株式会社アムテット            |

### Abrasion-resistant of the disc brake pad

■ When compounding resin of the disc brake pad with Pana-Tetra, abrasion-resistant of the disc brake pad can be improved.

Obtain excellent Abrasion-resistance of the disc brake pad

| Braking condition                                  | Start : 90 km/h End : 0 km/h                                                             |
|----------------------------------------------------|------------------------------------------------------------------------------------------|
| Braking cycle                                      | 500 cycle                                                                                |
| Rotor temperature at the time of the braking start | 150 °C                                                                                   |
| Effect of abrasion-<br>resistance                  | With Pana-Tera 0.92 mm<br>Comparison : Potassium titanate whisker<br>composition 1.19 mm |



### Filtering characteristics (1)

18

株式会社アムテック

#### The filtration efficiency of the filter paper with Pana-Tetra is superior to diatomite filter paper.

- 1) The filter paper with Pana-Tetra is half thinness and penetration efficiency realizes twice.
- 2) Filtration efficiency of 90% or more is realized by 0.3 micrometer of mean-particle-diameter dust.
- 3) Pana-Tetra has the characteristic of antibacterial properties and ultraviolet absorption with the tetrapod form.





.000x 1.5kV

### Filtering characteristics (2)



#### **Antibacterial property Dust collection filter with Pana-Tetra**

| Item       | Method         | Filter representative properties |
|------------|----------------|----------------------------------|
| Thickness  | JIS P 8118     | 0. 19mm                          |
| Loss       | Dust PAO 0.3µm | 75Pa                             |
| Efficiency | Speed 5.3m/sec | 95%                              |
| Strength   | JIS P 8113     | 3 N/15mm                         |

Antibacterial evaluation (JISL1902)



#### Filter photograph for air cleaners

| Antibacterial | Pacillus type            | Number of live       | ving bacillus |  |
|---------------|--------------------------|----------------------|---------------|--|
| agent         | Bacilius type            | 0 hrs.               | 24hrs. after  |  |
| MK-10         | Staphylococcus<br>aureus | 1. 9×10 <sup>6</sup> | <200          |  |
|               | and stands               | Constant States      | 株式            |  |

### **Ultraviolet rays absorption**

■ Pana-Tetra has superior ultraviolet rays absorption characteristic by absorbing ultraviolet rays (Wavelength : 375nm). In addition, it possesses the characteristic of the white powder which shows high reflectance from a

Pana-Tetra



### Flighly elastic screw lock agent

I use a highly elastic screw lock agent which is high-strength resin with Pana-Tetra.

Feature of screw coated lock agent with Pana-Tetra



Pana-Tetra

#### **(1)Improvement of repetition clamping performance**

- Decrement of initial torque and the return torque small in comparison with a screw coated lock agent without Pana-Tetra.
- •The repetition use number of times improves in comparison with the screw coated lock agent made in other maker.

#### **②Superior torque transmission**

Frictional force in tighten the screw becomes smaller, a transmission power improves, and torque is stable. As a result, it is easy to tighten the lock screw and becomes hard to loosen in comparison with the screw coated lock agent made in other maker.

Development to the size down of the screw. The realization of downsizing and the price reduction of the screw.



#### SEM photograph of film lap cutting paper blade with Pana-Tetra







## Comparison with General Zinc Oxide



| ltem                            | Pana-Tetra                                                                                                                                                                                                                                                                 | General Zinc Oxide                                                                                                                                                                               |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Crystal structure               | A hexagonal system (Wurtzite type)                                                                                                                                                                                                                                         |                                                                                                                                                                                                  |
| Shape                           | Tetrapod-shaped                                                                                                                                                                                                                                                            | Formless granular <ul> <li>Sphere-shaped granular</li> </ul>                                                                                                                                     |
| Purity                          | Single Crystal<br>(Purity : over 99.999 %)                                                                                                                                                                                                                                 | Polycrystalline<br>(Purity : over 99%)                                                                                                                                                           |
| Volume resistance<br>(Ω·cm)     | About 10                                                                                                                                                                                                                                                                   | Over 10E10                                                                                                                                                                                       |
| Thermal conductivity<br>(W∕m∙k) | About 25                                                                                                                                                                                                                                                                   | About 25                                                                                                                                                                                         |
| Average particle size<br>(µm)   | About 10(2 ~ 50)                                                                                                                                                                                                                                                           | 0.01 ~ 1.5                                                                                                                                                                                       |
| Application                     | Compound Rubber (Tire, Shoes)<br>Improvement of braking property<br>(Effect over 30% on ice surface)<br>Compound in resin or paint<br>-Antistatic additional effect<br>-Size precision improvement<br>-Abrasion-resistant improvement<br>-Thermal conductivity improvement | Compound Rubber:<br>vulcanization accelerant<br>(No effect of braking property)<br>Electronic materials (Ferrite etx.)<br>Cosmetic: UV cuts<br>Paint : Color (white)<br>Medical : antiphlogistic |

### Safty of "Pana-Tetra"



| Dissolution    | Water / Ethanol ⇒ Not dissolve<br>Acid / Alkali ⇒ Dissolve (in a short time)                                                                          |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Characteristic |                                                                                                                                                       |  |
|                | ⇒ If a person eats Pana-Tetra, it dissolves in the stomach<br>and If a person beathes Pana-Tetra ,it dissolves in the secretion<br>enzyme from lungs. |  |
|                | $\Rightarrow$ Pana-Tetra does not accumulate in the human body.                                                                                       |  |
|                | $\Rightarrow$ Pana-Tetra is safe from the human body.                                                                                                 |  |

